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The method of construction of an analytical solution for the far field of an exhaust jet on the basis of the
quasi-self-similar solution of Prandtl equations and the turbulence model with one differential equation for the
coefficient of kinematic viscosity is described. An exact numerical solution for distances to about 101 radii of
the nozzle is constructed for the basic version. Then, a numerical solution and its analytical approximation by
the quasi-self-similar solution are constructed. Approximations of the similarity parameters of the self-similar
problem as functions of the similarity parameters of the initial problem in the form of polynomials allow con-
struction of analytical solutions for different situations, which are in satisfactory agreement with the exact nu-
merical solution at distances of D103 radii.

The problem of description of a turbulent jet is related, first of all, to the selection of the turbulence model.
There exist models of isotropic turbulence (Prandtl and Taylor) which involve only algebraic relations between the co-
efficient of viscosity and the velocity gradient [1] and models with one [2, 3], two (k–ε model [4]), and three differ-
ential equations and different versions of them [5]. We dwell on the model with one differential equation. The isobaric
axisymmetric jet (p C p∞, ρ = p∞m ⁄ RT) is described by the following system:
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We write the boundary conditions. At x = 0

u = ua ,   v = 0 ,   H = Ha B CpTa + ua
2 ⁄ 2 ,   ν = 0.001νa ,   Y = Ya ,   0 ≤ r < ra ; (6)

u = u∞ ,   v = 0 ,   H = H∞ B CpT∞ + u∞
2  ⁄ 2 ,   ν = 0.001νa ,   Y = Y∞ ,   ra ≤ r ≤ rm ; (7)
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ν (0, ra) = νa B 0.014ra  ua − u∞  ,   r = ra . (8)

Here ua and Ta are the velocity and temperature at the cut of the nozzle with a radius ra. On the jet axis r = 0 and
beyond the jet at r = rm we fulfill the conditions of symmetry and decay of disturbances within the entire field along
the longitudinal coordinate 0 ≤ x ≤ xm:

∂ν
∂r

 = 0 ,   
∂u
∂r

 = 0 ,   v = 0 ,   
∂H
∂r

 = 0 ,   
∂Y
∂r

 = 0 . (9)

At a large distance from the jet in the concurrent flow at r = rm we can also specify conditions (7) instead of (9).
We relate the density ρ, the velocity components u and v, and the enthalpy H to the parameters in the con-

current flow ρ∞, u∞, and H∞, the coordinates x and r to ra, and the coefficients of turbulent dynamic viscosity µ, ther-
mal conductivity k, and diffusion D to the characteristic quantities µa = ρ∞νa, ka = Cpµa/Pr, and Da = νa/Sc. As the
similarity parameters we obtain the concurrency 1/s = u∞ ⁄ ua, the parameter of heating h = Ha

 ⁄ H∞, and the relative
mass concentration of the vapor at the nozzle cut Ya and in the atmosphere Y∞. The Reynolds number Re = u∞ra

 ⁄ νa
= 1/(0.014 s − 1 ) is expressed in terms of the concurrency. We assume the turbulent Prandtl Pr and Schmidt Sc num-
bers to be equal to unity, although, in the general case, the method under development holds for Pr ≠ 1 and Sc ≠ 1.
The problem was solved numerically using the implicit finite-difference scheme [6]. At the distance x ≥ 10ra, the initial
portion ends and the excess velocity u1 = u − u∞, the enthalpy H1 = H − H∞ (temperature T1 = T − T∞), and the vapor
concentration Y1 = Y − Y∞ sharply decrease within the intermediate range. The coefficient of kinematic viscosity first
quickly increases to a certain cross section xmν and then slowly decreases. In the Prandtl model of turbulence, the dis-
tance is xmν D 10ra. In the model with one differential equation, the distance xmν is several times larger and the coef-
ficient of turbulent viscosity decreases much more slowly than in the Prandtl model. At the distance x D 102ra, the
solution approaches the self-similar one. When x D 103ra, the complete self-similarity is also not observed.

We approximate the exact numerical solution by the analytical one using the quasi-self-similar solution. We
write the initial equations (1)–(5) at large distances x ≥ 102ra in the coordinate system tied to the atmosphere:
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We use the self-similar variables

ν1 (r, t) = tnf (η) ,   η = r
2

8t
n+1

 ,   u1 = tpw (η) ,   p = n − 1
2

 ,   H1 = tmq (η) ,   Y1 = tgz (η) . (12)

The system is reduced to the ordinary differential equations

nf − (n + 1) f ′η = (ηff ′)′ + 0.2f √η ⁄ 2   w ′  ,   pw − (n + 1) w ′η = (ηfw ′)′ ⁄ 2 ,

mq − (n + 1) q ′η = (ηfq ′)′ ⁄ 2 ,   gz − (n + 1) z ′η = (ηfz ′)′ ⁄ 2 . (13)

Disclosing the singularity of system (10)–(11) on the axis at r = 0, we find the conditions for the derivatives at η = 0:
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Here ν10, u10, H10, and Y10 are the numerically found values of the sought quantities in a certain cross section x =
x10 = u∞t10, beginning with which we will construct the quasi-self-similar approximation. At the edge of the jet, at
η = ηm the sought functions w, q, and z(ηm) must simultaneously take zero values and the function f must take a low
nonzero value. We relate the functions sought to the known values at zero F = f ⁄ f0, W = w ⁄ w0, Q = q ⁄ q0, and Z  =
z ⁄ z0 and the independent variable to the maximum value ξ = η ⁄ ηm. From (13) we obtain
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(14)

It is evident that the condition of simultaneous vanishing of the three sought functions at ξ = 1 requires the

equality g = m = p. This is confirmed by the numerical solution. Self-similarity is violated, since p ≠ (n − 1) ⁄ 2. The

similarity parameter B in (14) must be multiplied by the quantity t10
p−(n−1) ⁄ 2, which is close to unity: B =

0.2w0t10
p−(n−1) ⁄ 2/√ (2ηm)  = 0.4u10t10

 ⁄ r10, where r10 = √ (8ηmt10
n+1)  is the transverse dimension of the jet. The problem is

reduced to construction of the solution for the first two ordinary differential equations of second order from system (14)
with unit values of the sought functions assigned at zero and with the derivatives involving free parameters n/A and
2p/A. We find the sought values of the exponents n and p from the exact numerical solution on the jet axis:

n C ln (ν10
 ⁄ νe)/ln (x10

 ⁄ xe) and p C ln  (u10
 ⁄ ue)/ln (x10

 ⁄ xe). The values of the quantity ηm0 = r10
2 /(8t0

n+1) which corre-

spond to the self-similar solution give a shift of the time origin in the coordinate system tied to the atmosphere by the

value ∆t = t10 − t0 (or ∆x = x10 − x0 in the system tied to the airplane nozzle), where t0 is such that the verified simi-

larity parameters A = f0 ⁄ ηm0 = (t0 ⁄ t10)
nν10t08 ⁄ r10

2  and B = 0.2w0t10
p−(n−1) ⁄ 2/√(2ηm0)  = 0.4u10t0/r10(t0 ⁄ t10)

p simultane-

ously with the above-given exponents n and p allow fulfillment of the zero conditions of the sought functions W = Q

= Z at the jet edge at ξ = 1. In the self-similar solution at very large distances x > 104ra, the derivative of the function

F(ξ) has a singularity when ξ → 1: F′(ξ) D 1 ⁄ (1 − ξ)1
 ⁄ 2. In the quasi-self-similar solution at closer distances

x D (102−103)ra, it is sufficient to use, instead of F(ξ = 1) = 0, a softer condition of a decrease of an order of magni-

tude in the function F(ξ = 1) compared to its maximum value at zero F(ξ = 0) = 1.
We consider two versions of approximation of the exact solution by the quasi-self-similar one with an exam-

ple of the exhaust jet from an Il-96 airplane (engine PS-90A) in cruising flight mode at a height of 11 km: ra = 0.712
m, p∞ = 22,690 N/m2, u∞ = 236 m/sec, ua = 404 m/sec, T∞ = 216.7 K, Ta = 287 K, s = 1.712, h  = 1.506, Ya =
0.0039, and concentration of a saturated vapor above ice Ys.i(T∞) = Ys.i∞ = 4.58⋅10−5. The last quantity is necessary
for calculation of the concentration of the condensate (ice) in the aerosol:

 Yi = Y − Ys.i (T) = Y − Ys.i∞ exp 
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T
mwLdT

RT
2










 . (15)

1. We approximate the exact solution by the self-similar one within the range x = (102–103)ra. For the above-
given basic version, the exact numerical solution in the initial cross section x10 = 71.2 m gives the following values:
ν10 = 3.80 m2/sec, u10 = 36.6 m/sec, H10 = 2.69⋅104 J/kg (T10 = 17.5 K), Y10 = 8.49⋅10−4, jet radius rj = 2.84 m,
and condensation-trail radius rc = 2.58 m. In the end cross section xe = 712 m, we obtained ν1e = 2.02 m2/sec, u1e =
4.98 m/sec, H1e = 4700 J/kg (T1e = 2.45 K), Y1e = 1.16⋅10−4, rj.e = 7.72 m, and rc.e = 4.59 m. For quasi-self-similar
problem (14) we calculated A = 1.338, B = 1.603, n = −0.2745, and p = m = g = −0.8663. The solution is well ap-
proximated by the polynomials of the second degree
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F = 0.9966 − 0.3733ξ − 0.5256ξ2 ,   W = Q = Z = 0.9908 − 1.1858ξ + 0.2101ξ2 . (16)

Figure 1 gives the exact solution ν(x, r = 0) and its approximation. Quasi-self-similar approximation gives a
slight overstatement of the values for the profiles of the quantities ν(r), u(r), T(r), and Y(r) at the edge of the jet in
the initial cross section x10 and narrows the jet in the end cross section xe by the value ∆r ⁄ rj.e ≤ 0.1. Good agreement
has also been obtained for the concentration of the condensate Yi, which, in view of the exponential relation (15), is
very sensitive to weak changes in T and Y. This quantity can serve as an approximation criterion: with satisfactory ap-
proximation of the quantity Yi the remaining sought functions, first of all T and Y, will also be in good agreement
with the exact solution. The quantities A, B, n, and p and the functions F and W do not depend on Ya and slightly
change within the range s = 1.6–1.8, h = 1.5–2.0 of the similarity parameters of the initial problem (1)–(5). Compari-
son with the exact solution showed that slight changes in the solution (16) can be neglected. The dependences of the
similarity parameters A, B, n, and p on s and h are close to linear ones and are easily approximated for other condi-
tions of flight and other airplanes. For example, for an Il-86 airplane (engine NK-86) in the cruising-flight mode at a
height of 11 km we have ra = 0.54 m, u∞ = 236 m/sec, ua = 389 m/sec, T∞ = 216.7 K, Ta = 388 K, s = 1.648, h
= 1.896 and Ya = 0.0063. According to a strict numerical algorithm, at x10 = 54 m we have obtained ν10 = 2.26
m2/sec, u10 = 31.3 m/sec, H10 = 4.50⋅104 J/kg (T10 = 36.9 K), Y10 = 1.29⋅10−3, rj = 1.93 m, and rc = 1.815 m. We
find the corresponding similarity parameters of the quasi-self-similar solution by linear approximation on the basis of
the results of parametric calculations for the basic version (n  = −0.2893, p = −0.8664, A = 1.334, and B = 1.546).
Figure 2 gives the exact dependences of the temperature and the velocity on the axis of the jet behind the Il-86 air-
plane and the quasi-self-similar approximation. Transverse profiles correspond to the exact solution within the entire
range of x with an error no higher than the error of the basic version.

2. In the second version, we approximate the exact solution by the quasi-self-similar one on the total length
of the condensation trail from the cross section xm of the maximum value sYit = max of the average over the cross-
section concentration of the condensate to the end cross section xc.e. In the tail of the condensation trail, which is
comparable to its total length, the concentration of the condensate is so low that this region virtually makes no con-
tribution to the total mass of the condensate. Not to overstate the length of the trail in the model considered, we cut
the condensation trail in the cross section where the concentration of the condensate on the axis amounts to 1% of its
maximum. For the basic version we have obtained xm = 48.7 m, ν10 = 3.94 m2/sec, u10 = 54.7 m/sec, H10 =
4.06⋅104 J/kg (T10 = 26.0 K), Y10 = 1.27⋅10−3, rj = 2.30 m, rc = 2.17 m, s = 1.712, h = 1.506, Ya = 0.0039, and
Ys.i∞ = 4.58⋅10−5; in the end cross section xc.e = 1801 m, ν1e = 1.509 m2/sec, u1e = 2.50 m/sec, H1e = 1500 J/kg
(T1e = 1.25 K), Y1e = 5.81⋅10−5, rj.e = 10.9 m, and rc.e = 2.30 m. The similarity parameters of quasi-self-similar prob-

Fig. 1. Coefficient of kinematic viscosity ν along the axis of the jet behind the
Il-96 airplane in the cruising-flight mode (base): 1) numerical solution; 2)
quasi-self-similar solution constructed within the range ∆x = (102–103)ra. ν,
m2/sec; x, m.

Fig. 2. Temperature T (1) and velocity u (2) on the axis of the jet behind the
Il-86 airplane in the cruising-flight mode: a) numerical solution; b) quasi-self-
similar solution constructed on the basis of the approximation of the solution
for Il-96. T, K; u, m/sec; x, m.
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lem (14) are A = 1.5067, B = 2.0419, n = −0.2656, and p = m = g = −0.8542. The solution is approximated by the
polynomials of the second degree

F = 0.9911 − 0.2890ξ − 0.6133ξ2 ,   W = Q = Z = 0.9881 − 0.9997ξ + 0.0757ξ2 . (17)

The parametric calculations have shown that the dependences of the similarity parameters of the quasi-self-
similar problem n, p, A, and B on the parameters s, h, Ya, and Ys.i∞ of the initial problem (1)–(5) are more complex
than in the first version. The dependences on the quantity Ys.i∞/10−5 within the range from 2.46 to 9 can be approxi-
mated by polynomials of the second degree with coefficients of a0 = −0.2223, −0.8425, 1.955, and 3.307; a1 =
−0.0133, −0.0014, −0.1250, and −0.3587; a2 = 0.000853, −0.000205, 0.00589, and 0.01827 for n, p, A, and B, respec-
tively.

As an example of the use of analytical formulas, we consider seasonal-latitudinal changes in the temperature
in the cruising flight of an Il-96 aerobus.

With an increase of +5 K in the atmospheric temperature (T∞ = 221.7 K) and constant propulsion we have
[7] u∞ = 238 m/sec, ua = 410 m/sec, Ta = 292 K, s = 1.723, h = 1.503, Ya = 0.00398, and Ys.i∞ = 8.96⋅10−5. The
numerical solution at xm = 70 m gives ν10 = 3.92 m2/sec, u10 = 37.7 m/sec, H10 = 1.74⋅104 J/kg, T10 = 17.9 K,
Y10 = 8.73⋅10−4, rj = 2.81 m, and rc = 2.34 m. The parameters s and h change by less than 0.7%, while the quantity
Ya changes by about 2%. At Ys.i∞ = 9⋅10−5, the dependences of the similarity parameters n, p, A, and B on Ya within
the range 0.003–0.008 can be approximated by the polynomials of the second degree with coefficients of a0 =
−0.2801, −0.9262, 0.9150, and 0.5136; a1 = 1.494, 17.75, 124.4, and 329.7; a2 = 75.47, −1111, −6066, and −16,770
for n, p, A, and B, respectively. For the version under consideration we obtain n = –0.2730, p = −0.8732, A = 1.314,
and B = 1.560. Figure 3 gives the relative concentrations of the vapor Y and ice Yi on the jet axis as functions of the
distance x.

Under winter conditions and high latitudes, deviations of −10, −20, and −30 K in ∆T∞ are possible at a height
of 11 km. For example, at −5 K (T∞ = 211.7 K) we have [7] u∞ = 235.2 m/sec, ua = 397 m/sec, Ta = 280 K, s =
1.688, h = 1.502, Ya = 0.0038, and Ys.i∞ = 2.46⋅10−5. At xm = 37 m, the numerical solution gives ν10 = 3.76 m2/sec,
u10 = 67 m/sec, H10 = 5.32⋅104 J/kg, T10 = 33.5 K, Y10 = 1.68⋅10−3, rj = 1.975 m, and rc = 1.954 m. At Ys.i∞ =
2.5⋅10−5, the dependences of the parameters n, p, A, and B on Ya within the range 0.001–0.0045 can be approximated
by the square polynomial: a0 = −0.2823, −0.8952, 1.046, and 0.9186; a1 = 7.866, 24.87, 273.5, and 645.7; a2 = 104.6,
−3180, −27,817, and −58,272 for n, p, A, and B, respectively. The calculated values of the similarity parameters are n

Fig. 3. Concentrations of the vapor Y (1) and ice Yi (2) in the aerosol on the
axis of the jet behind the Il-96 airplane with a deviation of +5 K in the at-
mospheric temperature: a) exact numerical solution; b) approximation on the
basis of the quasi-self-similar solution constructed on the length of the conden-
sation trail.

Fig. 4. Transverse distributions of the concentration of the vapor Y (1) and ice
Yi (2) in the aerosol at a distance of 3000 m in the jet behind the Il-96 air-
plane with a deviation of −5 K in the atmospheric temperature; a and b, nota-
tion as in Fig. 3.
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= −0.2510, p = −0.8466, A = 1.684, and B = 2.531. Figure 4 gives transverse distributions of the concentrations of
the vapor Y and ice Yi at the distance x = 3000 m.

Thus, we have suggested a description of the exhaust jet in the far field x ≥ 102ra using the quasi-self-similar
solution in two versions of approximation of similarity parameters: (1) within the range ∆x = (002–103)ra; (2) on the
length of the condensation trail ∆x = xm − xc.e. Analytical formulas allow calculation of the initial conditions for the
problem of interaction between the jet and the end vortices, estimation of the initial parameters of the condensation
trail, and calculation of the total and average characteristics of the condensation trail.

This work was carried out under a grant from NASA, No. NCC-1, and the Central Aerohydrodynamic Insti-
tute (TsAGI).

NOTATION

t, time, sec; x and r, longitudinal and transverse coordinates, m; u and v, velocity components, m/sec; ρ, den-
sity, kg/m3; T, temperature, K; H, gas enthalpy, J/kg; Y, relative mass concentration of the vapor; µ, coefficient of tur-
bulent dynamic viscosity, kg/(m⋅sec); k, coefficient of thermal conductivity, W/(m⋅sec); D, coefficient of diffusion,
m2/sec; ν = µ ⁄ ρ, coefficient of turbulent kinematic viscosity, m2/sec; L, latent heat of evaporation (condensation), J/kg;
R, universal gas constant, J/(kmole⋅K); m and mw, molar masses of air and water, kg/kmole; similarity parameters:
concurrency 1/s = u∞ ⁄ ua, parameter of heating h = Ha

 ⁄ H∞, relative mass concentration of the vapor at the nozzle cut
Ya and in the atmosphere Y∞, concentration of the saturated vapor above ice Ys.i∞; Re = u∞ra

 ⁄ νa, Reynolds number;
Pr = Cpµ ⁄ k, Prandtl number; Sc = µ ⁄ ρD, Schmidt number; f(η), w(η), q(η), z(η), η = r2 ⁄ 8tn+1, ξ, n, g, m, and p,
functions and parameters of the self-similar solution. Subscripts: a, average, averaged; ∞, parameters at the cut of the
nozzle of radius ra and in the atmosphere; c, condensation trail; e, end; i, ice; j, jet; m, maximum; p, pressure; s, satu-
ration; w, water; 0, initial; 1, principal terms of the disturbances of the sought functions.
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